Position of aromatic residues in the S6 domain, not inactivation, dictates cisapride sensitivity of HERG and eag potassium channels.
نویسندگان
چکیده
Unintended block of HERG K+ channels is a side effect of many common medications and is the most common cause of acquired long QT syndrome associated with increased risk of life-threatening arrhythmias. The molecular mechanism of high-affinity HERG block by structurally diverse compounds has been attributed to pi-stacking and cation-pi interactions of a drug (e.g., cisapride) with specific aromatic amino acid residues (Tyr-652 and Phe-656) in the S6 alpha-helical domain that face the central cavity of the channel. It also has been proposed that strong C-type inactivation of HERG facilitates or is the primary determinant of high-affinity drug binding. The structurally related, but noninactivating eag channel is insensitive to HERG blockers unless inactivation is induced by specific amino acid mutations [Ficker, E., Jarolimek, W. & Brown, A. M. (2001) Mol. Pharmacol. 60, 1343-1348]. Here we examine the relative importance of inactivation vs. positioning of S6 aromatic residues in determining sensitivity of HERG and eag channels to block by cisapride. The repositioning of Tyr-652 or Phe-656 along the S6 alpha-helical domain of HERG reduced sensitivity of channels to block by cisapride. Moreover, independent of inactivation, repositioning of the equivalent aromatic residues in Drosophila eag channels induced sensitivity to block by cisapride. These findings suggest that positioning of S6 aromatic residues relative to the central cavity of the channel, not inactivation per se determines drug block of HERG or eag channels.
منابع مشابه
Physicochemical features of the HERG channel drug binding site.
Blockade of hERG K(+) channels in the heart is an unintentional side effect of many drugs and can induce cardiac arrhythmia and sudden death. It has become common practice in the past few years to screen compounds for hERG channel activity early during the drug discovery process. Understanding the molecular basis of drug binding to hERG is crucial for the rational design of medications devoid o...
متن کاملThe eag domain regulates hERG channel inactivation gating via a direct interaction
Human ether-á-go-go (eag)-related gene (hERG) potassium channel kinetics are characterized by rapid inactivation upon depolarization, along with rapid recovery from inactivation and very slow closing (deactivation) upon repolarization. These factors combine to create a resurgent hERG current, where the current amplitude is paradoxically larger with repolarization than with depolarization. Previ...
متن کاملRefining insights into high-affinity drug binding to the human ether-à-go-go-related gene potassium channel.
hERG (human ether-à-go-go-related gene) potassium (K(+)) channels play a crucial role in electrophysiological activity in the heart, exerting a profound influence on ventricular action potential repolarization and on the duration of the QT interval of the electrocardiogram. hERG channels are strongly implicated in the acquired form of long QT syndrome in that they exhibit a unique susceptibilit...
متن کاملIntracellular K+ is required for the inactivation-induced high-affinity binding of cisapride to HERG channels.
Many commonly used medications can cause long QT syndrome and thus increase the risk of life-threatening arrhythmias. High-affinity human Ether-à-go-go-related gene (HERG) potassium channel blockade by structurally diverse compounds is almost exclusively responsible for this side effect. Understanding drug-HERG channel interactions is an important step in avoiding drug-induced long QT syndromes...
متن کاملICA-105574 interacts with a common binding site to elicit opposite effects on inactivation gating of EAG and ERG potassium channels.
Rapid and voltage-dependent inactivation greatly attenuates outward currents in ether-a-go-go-related gene (ERG) K(+) channels. In contrast, inactivation of related ether-a-go-go (EAG) K(+) channels is very slow and minimally reduces outward currents. ICA-105574 (ICA, or 3-nitro-N-[4-phenoxyphenyl]-benzamide) has opposite effects on inactivation of these two channel types. Although ICA greatly ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 99 19 شماره
صفحات -
تاریخ انتشار 2002